Mise en évidence de transitions de rigidité dans les silicates d'alcalins

Matériau « verre »

Cristal

- structure désordonné
- désordre de configuration
 - ordre à courte distance
- •Pas d'ordre à longue distance

 \Rightarrow Matériau dont la structure est difficile à caractériser

<u> 1979-83 :</u>

Théorie des contraintes de Phillips et Thorpe : analyse mécanique de la structure vitreuse.

<u>1979-83 :</u>

Théorie des contraintes de Phillips et Thorpe : analyse mécanique de la structure vitreuse.

Principe

Réseau Vitreux

Atomes (Ions)Liaisons Chimiques

<u>Treillis mécanique</u>

Points mécaniques
Tiges / Barres

Problème de Mécanique Lagrangienne

- Degrés de liberté (N_d)
 - Contraintes (N_c)

<u>1979-83 :</u>

Théorie des contraintes de Phillips et Thorpe : analyse mécanique de la structure vitreuse.

<u>Principe</u>

3 états de rigidité du réseau en fonction de : • N_c : nombre moyen de contraintes par atome

• N_d : nombre de degré de liberté par atome

 $N_c < N_d$ Mou (Floppy) sous-contraint $N_c = N_d$ Isostatique : rigide / état idéal de contrainte $N_c > N_d$ Rigide sur-contraint

<u> 1979-83 :</u>

Théorie des contraintes de Phillips et Thorpe : analyse mécanique de la structure vitreuse.

Transitions de Rigidité : Changement d'état de contrainte du système $F \Leftrightarrow I \Leftrightarrow R$

⇒ Treillis Mécanique : Ajout / Suppression de tiges
 ⇒ Réseau Vitreux : variation du degré de polymérisation du réseau (Composition)

<u>1979-83 :</u>

Théorie des contraintes de Phillips et Thorpe : analyse mécanique de la structure vitreuse.

<u>L'idée de Phillips</u>

Réseau Vitreux Isostatique = Verre idéal du point de vue mécanique

 \Rightarrow Vitrifie dans des conditions mécaniques idéales

 \Rightarrow Vitrification optimale

<u> 1979-83 :</u>

Théorie des contraintes de Phillips et Thorpe : analyse mécanique de la structure vitreuse.

Etude de la rigidité du réseau \Leftrightarrow Dénombrement de contraintes

Premiers développements de l'interface Théorie / Expérience :

- <u>Verres de chalcogénures</u> : éléments IV-VI (ex : Ge-Se, Si-Se...)
 Liaisons covalentes !
 - \Rightarrow Bon accord entre théorie et résultats expérimentaux
- <u>Verres d'oxydes</u> ?
 - Liaisons iono-covalentes !
 - \Rightarrow Plus difficiles à analyser en terme de contraintes

Etude présentée :

• Application de la théorie des contraintes aux silicates d'alcalins $(SiO_2)_{1-x}(R_2O)_x$, R = Na, K, Rb, Cs

• Caractérisation expérimentale de l'état de rigidité des réseaux vitreux de ces quatre systèmes

• Confrontation des résultats expérimentaux aux prévisions théoriques

Théorie des Contraintes (en Champ Moyen)

Contraintes d'étirement α_{ii}

Contraintes de balancement β_{ijk}

Hypothèse n°1 : Les contraintes sont indépendantes de la nature des atomes qui se partagent les liaisons

k

 \Rightarrow Liaisons purement covalentes

 \Rightarrow Contraintes α et β en fonction de la coordinence r

• Contraintes d'étirement α (Bond Stretching - BS) :

1 liaison $\Leftrightarrow 1/2$ BS par atome r liaisons $\Leftrightarrow r/2$ BS par atome

• Contraintes de balancement β (Bond Bending - BB) :

 $r = 1 \Rightarrow pas de BB$

• Réseau à liaisons covalentes :

r=-1	1⁄2 BS	- 4-
Coordinence $r \ge 2$	r/2 BS	2r-3 BB

Exemples : chalcogénures (Ge-Se, Si-Se), Chalcohalures (Ge-S-I)

• Réseau à liaisons iono-covalentes :

Exemple : Verres d'oxydes

Fortes différences d'électronégativité entre les atomes

 \Rightarrow contraintes différentes selon le type d'atomes

⇒ Nouvelles hypothèses !

Silicates d'alcalins ou d'alcalino-terreux :

Si

Na

Réseau de silice SiO_2 + cations modificateurs (Na, K, Rb, Cs, Ca, Mg...)

Structure du réseau silicaté : Tétraèdres $SiO_{4/2}$ reliés par des oxygènes « pontants » O^{P} .

Ajout de modificateurs : création d'oxygènes non pontant O^{NP}. (dépolymérisation du réseau)

Cations modificateurs dans des cavités du réseau (cages d'oxygènes).

• Liaisons Si-O : dénombrement « classique » des contraintes

• <u>Atomes modificateurs</u> : gestion particulière des contraintes.

 \Rightarrow Hypothèse n°2 :

Contraintes fractionnées ou Contraintes mécaniquement effectives. Utilisation systématique de la valence et non de la coordinence pour les modificateurs.

Atomes d'oxygène : Possibilité de briser des contraintes β.
 (Hypothèse n°3)

Selon la nature de l'atome modificateur
En particulier sur les oxygènes non-pontants

Algorithme appliqué sur :

- $(SiO_2)_{1-x}(R_2O)_x (R = alcalin : Na, K...)$
- $(SiO_2)_{1-y}(R'O)_y (R' = alcalinoterreux : Mg, Ca...)$

Application aux silicates d'Alcalins

$(SiO_2)_{1-x}(R_2O)_x$ (R = alcalin : Na, K...)

 $r_{alcalin} = 1$ Pas de contrainte de balancement sur R Contrainte de balancement brisées sur O^{NP}

atome	r	BS	BB	Quantité
Si	4	2	5	1-x
R	4	1/2	0	2x
ONP	2	1	0	2x
OP	2	1	1	2-3x

Contraintes par atomes : $N_c = (11-10x)/3$ Degrés de liberté par atome : $N_d = 3$

Critère d'Isostaticité : $N_c = N_d$

Réseau isostatique pour $x_p = 0,20$

Théorie des contraintes (en champ moyen)

Théorie des contraintes

• En présence d'un champ moyen :

Trépartition aléatoire des contraintes

 \mathbb{F} 1 unique transition de rigidité R \Leftrightarrow F

En l'absence de champ moyen :

Réseau auto-organisé : distribution préférentielle des contraintes.

Existence d'une phase intermédiaire Isostatique

☞ 2 transitions de rigidité distinctes $R \Leftrightarrow I \Leftrightarrow F$

Thorpe et al. – J. Non-Cryst. Solids 266-269, 859. (2000)

Théorie des contraintes en l'absence de champ moyen

Approximation des clusters de taille grandissante (SICA)

Simulation basée sur les probabilités d'existence de chaque cluster

Théorie des contraintes

Conclusions

• Prévision d'une transition de rigidité simple $F \Leftrightarrow R$ par la théorie des contraintes

Composition critique dans $(SiO_2)_{1-x}(R_2O)_x : x_c = 0,20$ R = alcalin.

Composition critique dans $(SiO_2)_{1-y}(R'O)_y : y_c = 0,50$ R = alcalinoterreux.

• Observation de deux transitions de rigidité F \Leftrightarrow I \Leftrightarrow R dans les réseaux autoorganisés. Existence d'une phase intermédiaire Isostatique.

• Quelques résultats utiles :

The second seco

 \mathbb{C} Cluster $Q_4 - Q_4 : \mathbb{R} / \text{Cluster } Q_4 - Q_3 : \mathbb{I} / \text{Cluster } Q_3 - Q_3 : \mathbb{F}$

Caractérisation expérimentale de la rigidité du réseau

Quelles grandeurs physiques pour analyser la rigidité du réseau vitreux ?

 \Rightarrow Rendre compte de son état de contrainte

Chalcogénures :

Nombreuses signatures expérimentales d'une ou plusieurs transitions de rigidité

Parmi les techniques les plus fréquemment utilisées :

Etude des modes de vibration du réseau par spectroscopie Raman
Etude de la chaleur non-réversible en DSC modulée en température (MDSC)

Dans cette étude :

Etude des modes de vibration du réseau par spectroscopie Brillouin
Etude de la conductivité électrique

Sur $(SiO_2)_{1-x}(K_2O)_x$ et $(SiO_2)_{1-x}(Na_2O)_x$

Caractérisation expérimentale de la rigidité du réseau

Spectroscopie de diffusion Brillouin

 \Rightarrow Interaction Photon/Phonon : sonde les modes acoustiques de vibration de la matière.

 \Rightarrow Matériau : caractérisation de l'élasticité !

 $C_{11} = \rho \left(\frac{\lambda_0}{\sqrt{2n}} V_L \right)$ $C_{44} = \rho \left(\frac{\lambda_0}{\sqrt{2n}} V_T \right)$

 ρ : masse volumique n : indice de réfraction λ_0 : longueur d'onde

Amortissement maximum \Rightarrow Phase molle

<u>Energie Elastique Φ </u>

de mode mous

Composition x

 $\rightarrow dv/dT = 0$ at 20% molar for Rb₂O and Cs₂O silicate glasses

 \rightarrow Mechanical properties by Brillouin scattering are in agreement with the theory of rigidity

Caractérisation expérimentale de la rigidité du réseau

<u>Premières conclusions</u> (Spectroscopie Brillouin)

Mise en évidence de changements dans l'évolution avec la composition :

- Constantes élastiques C₁₁ et C₄₄
- Variations δC_{11} et δC_{44} au cours du recuit
- Atténuation acoustique longitudinale α_L • Energie élastique Φ

 \Rightarrow Signatures d'une transition de rigidité simple $\mathbb{R} \Leftrightarrow \mathbb{F}$

 \Rightarrow seuil de transition de rigidité :

- $(SiO_2)_{1-x}(K_2O)_x : x_c = 0,15$
- $(SiO_2)_{1-x}(Na_2O)_x : x_c = 0,20$

Id pour $(SiO_2)_{1-x}(Rb_2O)_x$ et $(SiO_2)_{1-x}(Cs_2O)_x$

Conductivité électrique

<u>Conductivité statique σ_{dc} </u>

Modèle Anderson-Stuart :

 \Rightarrow Saut des porteurs de charge d'un site cationique vers un autre \Rightarrow DEFORMATION de la structure vitreuse

□ 200°C ◊ 300°C △ 350°C ○ 400°C

Caractérisation expérimentale de la rigidité du réseau

Conclusions (Etude de la conductivité)

Dans le système $(SiO_2)_{1-x}(K_2O)_x$:

• Conductivité statique à une température donnée

 \Rightarrow régie par la rigidité du réseau

 $\Rightarrow Nouvelle signature de la transition de rigidité simple$ $R \Leftrightarrow F observée en spectroscopie Brillouin$